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A method is derived for describing the time-dependent behavior of a particles produced 
in a radially nonuniform slcndcr plasma column as a distribution function among the 
possible orbits. A multigroup numerical approximation is introduced to analyze the de- 
velopmcnt of the distribution function and its moments. Results are presented of cal- 
culations of the time-dcpcndcnt u-particle energy spectrum and radial density, energy, 
and electron heating profiles in plasma columns with radii comparable to the (Y Larmor 
radius. This tcchuique allows calculation of the a particle history at much more rapid rates 
than allowed by Monte Carlo tcchniqucs: The characteristic time scale is the Lvelectron 
slowing-down time rather than the cyclotron period. 

1. INTRODUCTION 

In order to understand the physics of a controlled thermonuclear plasma during 
fusion burn, it is essential to know the behavior of the reaction products. The reaction 
products of a deuterium tritium plasma include high-energy cy particles which, in a 
magnetically confined plasma, travel in orbital trajectories with gyro-radii on the 
order of several centimeters for most magnetic fields of interest to thermonuclear 
plasma confinement. In understanding the interaction between these N particles and 
the reacting plasma, it is dcsirablc to be able to describe the particle density, the 
thermalization rate, the plasma heating distribution, and the 01 energy spectrum. If 
the gyro-radius is not negligible compared to the plasma dimensions, or if the energy 
spectrum is not Maxwellian, a fluid-type description of the N particles is inadequate 
in defining these variables. In this case it is necessary to describe the N particles in 
terms of a population distribution function over the possible orbits. 

A few a-particle trajectories typical of those in a slender, high-6 solenoid are shown 
in Fig. 1. The magnetic field is parallel to the plasma column axis. Alpha particles 
travel through the plasma with large radii because of the low internal magnetic field 
in the high-/3 plasma. The orbital radii in the vacuum are smaller, causing the particles 
to reenter the plasma after an excursion into the vacuum. 

The importance of the ac particles on the fluid properties of the plasma has long 
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FIG. 1. Alpha-particle trajectories in a high-beta slender solenoid plasma coknn. 

been known to researchers concerned with sustaining controlled therrno~~c~e~~ 
reactions. Rose and Clark [l] showed that the presence off~sio~~produ~ed E particles 
can have a large effect on the pressure and energy balance of a cylindrical plasma. 
Sigmar and Joyce [2] demonstrated that a substantial fraction of the a-particle ener 
can be transferred to plasma ions in the 4-keV temperature range. 
analyses treated the plasma as a homogeneous fluid, although the latte 
dielectric effects. The neoclassical theory of a-particle transport has been developed 
for axisymmetric toroidal plasmas assuming the a: particles have a ~axwel~~a~ energy 
distribution [Z&4]. Dtichs and Pfirsch extended this theory by n~rne~ic~~~y solvmg an 
energy-space Fokker-Planck equation, and representing the quasi-steady solution as 
a linear combination of three Maxwellian distributions [5]. Tsuji et al [6] solved an 
energy-dependent Fokker-Planck equation with f?nite particle confinement times 
determines the time-dependent energy spectrum in a unifor.m plasma. Corman et al. [ 
have applied multigroup diffusion techniques to a Eokker-PIanck equation to in- 
vestigate slowing down and spatial transport of 01 particles in a field-free plasma. 
Finite-sized 01 orbits were not considered in any of these analyses. 

Stringer [S] and McAIees [9] determined the phase-space distribution function of cr: 
particles of constant energy in a tokamak plasma with radial structure. These reports 
treated orbital motion outside the context of neoclassical diffusion theory for the first 
time, but did not investigate the time dependence of the ol-particle distribution. 
and Miley [lo] investigated 01 orbit drift‘motion during slowing down in a toroidal 
plasma. Their technique approximates the change in i~div~~ua~ ol-particle orbits while 
slowing down and uses a multigroup description of the particles 
orbital characteristics. Adherence to guiding center theory is assumed. Stei~b~~e~ [I I] 
treated the problem of time-dependent slowing down in the case where a-particle 
orbits make excursions outside the plasma by defining an energy-dependent residence 
factor by which to increase the slowing-down time above that in a uniform p 

With the exception of Ref. [IO], it appears that no investigation prior to 
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has been made of time-dependent a-particle behavior in a nonuniform, magnetized 
plasma. The effects of large orbits on the phenonomena of a slowing down and asso- 
ciated plasma heating have not been explored for a distributed energy spectrum in an 
inhomogeneous plasma. A method is presented here to follow the development of 
the 01 particles produced by fusion in a slender, cylindrical, magnetically confined 
plasma column which includes a fusion source and nonuniform thermalization. This 
method allows determination of the radial properties of the 01 behavior, including 
density, pressure, and heating rate. An application is described here of time-dependent 
a-particle behavior in a fixed background plasma. 

Although the application described here is not self-consistent in order to focus on 
the mathematical technique, the method also allows determination of a-particle and 
background plasma behavior in a fully self-consistent manner, with an appropriate 
description of the plasma physics and the a-plasma interaction. Such an application 
has been performed, where the 01 particles transfer energy to the plasma electrons and 
ions in a nonuniform manner during thermalization, and the plasma is heated and 
expands [ 12]l. The results of this application have been published in another article [ 131. 

In this paper we will describe the ol-particle behavior in terms of a distribution 
function over the orbital parameters in axisymmetric, cylindrical geometry. The 
mathematical formulation of the distribution function development is presented in 
Section 2. The numerical techniques used to solve for the time development of the 
distribution function are presented in Section 3. The techniques for converting the 
distribution to space-dependent fluid variables are described in Section 4. The results 
of applying this methodology to two particular geometries are shown in Section 5. 

2. ~-PARTICLE DISTRIBUTION FUNCTION 

The geometry for which the methodology described here was formulated is that of 
an infinitely long, axisymmetric plasma column of radius comparable to an a-particle 
Larmor radius at birth, confined by an axial magnetic field. This description applies 
to the linear 0 pinch and the laser- and e-beam-heated solenoid plasmas. All spatial 
variables are assumed to be axially and azimuthally symmetric. The plasma column is 
nonuniform in the radial direction. 

Neglecting electrostatic fields, the a-particle Lagrangian in a magnetic field is 

L=1/2mu-u+qA*u, 

where A = A(r) & is the vector potential, defined by 

B=VxA. 

1 For a verification of the assumptions made in the derivations and a comparison with other 
computational results, the reader is referred to Ref. 1121. 
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A single-particle Hamiltonian is derived from this Lagrangian in terms of the canoni- 
cal momenta 

,I \ pr = mu,. , (ia) 

ps = mix0 + qrA, (ibj 

and 
\ 

p3 = mu, (jc; 

as 

Since r is the only spatial coordinate, the canonical angular and axial momenta JQ and 
JJ~ are constants of the motion. Furthermore, on a time scale for which A is static, the 
Hamiltonian does not explicitly depend on time, and is also a constant of the motion, 
With the axial symmetry of this problem, these three adiabatic invasiants, ES, P = p, j 
and v = pJm uniquely determine an a-particle trajectory. The velocity components 
can be obtained as a function of Y by inversion of Eq. (1). 

The collisional Boltzmann equation for a collection of particles in a magnetic field 
is 

Any function f of the constants of the motion is a solution to the time-inde~e~de~~t 
Vlasov equation [14], i.e., 

iffcan be expressed explicitly in terms of the constants of the motion. Therefore, if 
we describe the a-particle distribution in terms of the adiabatic invariants 27, P, and U: 
then the Boltz,mann equation reduces to 

aj(H, P, v) ?j 1 g 
at at collisions 1 a: Isourcc 

on a time scale for which the adiabatic invariants do not change rapidly for a sin& 
particle. This equation yields the time-dependence of the distribution of II: par:ic!es 

58r/34/3-4 
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among the various orbits, as the particles are produced and slow down. Since the 
single-particle trajectories are the characteristic curves of the Boltzmann equation [HI, 
the terms on the right-hand side of Eq. (5) must be determined along a trajectory, i.e., 
af/at must be determined for fixed H, P, and v. 

This result allows us to analyze the development in time of a collection of oi particles. 
We can describe the distribution of particles by the number of a: particles which 
follow each orbit. We label each a orbit by its identifying adiabatic invariants, and 
define a distribution function f(H, P, v) such that f(H, P, v) dHdPdu is the number of 
OL particles which follow orbits within dH of H, dP of P, and dv of v. This form of 
distribution function is fully equivalent to the more common phase-space distribution 
function f(r, u), and has the great advantage of already being explicitly expressed in 
terms of the Boltzmann equation characteristics. Along these characteristics, 

(6) 

For any 01 particle, the changes in H, P, and v are negligible on a time scale comparable 
to a cyclotron period, and the integrity of a single-particle orbit is preserved on this 
time scale. On a longer time scale, H, P, and v change slowly as a result of a-particle 
interactions with the background plasma. 

Equation (6) is a first-order equation in time which can be solved for the time- 
dependent a-particle distribution function f(H, P, U; t) by a perturbation method, 
provided that the rate at which particles change H, P, and 2’ is slow compared to an 
orbital period. Given the value off at any time, af/aH, iflaP, and ?f/av can be simply 
evaluated for each particular orbit (H, P, u). The partial time derivatives for each 
orbit must be evaluated by a suitable method of averaging the rate of change of the 
orbital parameters over many orbital periods. With such an average value obtained, 

where the brackets imply average values? taken along the characteristic curves, i.e., 
along the particle trajectories. These averages are taken by weighting the values at 
each radial location by the time l(dr/x,.)(H, P, v)l that a particle following the trajec- 
tory (H, P, v) spends at the location. For each parameter g to be averaged along a 
particular orbit (H, P, v), 

where the limits of integration are the radial turning points of the orbit represented by 
W, P, 4. 

The x particles lose their energy as a result of Coulomb interactions with the back- 
ground plasma. The rate of energy loss due to the electrons and ions is a function of 
plasma conditions. Given aEjat, the time derivatives can be quickly evaluated if the 
changes are assumed to be the cumulative result of small-angle scattering, which is 
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valid for ol-electron interactions through the entire energy range, and a good a 
mation for a-ion interactions at all energies but the low energy end of the (x spectrum. 
Large-angle deflections do not represent a major effect. In dimensionless units for 
which the plasma radius, a-particle birth energy and speed, plasma radius, vacuum 
magnetic field, and maximum angular momentum at the plasma edge are unity, 

aH aE 
-=-Y at at 

ap aE p - f&) _ r'EB(y), -=- 
at at 2H 

and 
au aE 21 -;;-=--* 
ot at 2H 

A is expressed in Coulomb gauge, where the azimuthal electric field is a rest& of the 
time dependence of A. The source term ?f/at / SOUFCe is assumed to be isotropic and 
proportional to n2 (ou> for orbits such that H = I, and zero for N < i . Dimension- 
less units as defined here are used throughout this article except when specikally 
labeled in SI units. 

Several authors [l&19] have developed theories to describe the rate of energy loss 
of LY. particles slowing down in a uniform plasma. Kammash and Galbraith developed 
an analytical expression for the energy loss rate which applies to slowing down in the 
classical and quantum regimes and varies smoothly between the two for intermediate 
energies [17]. This expression is given in the reference in Gaussian units as 

where 

$(x) is the standard error function, 
is the field particle mass, m, or mi , 

p is the reduced mass, Mm,/(M i an,) 



336 H. J. WILLENBERG 

This expression is used throughout the present investigation for the a energy loss 
rate. Anomalous slowing down, such as that considered by Sigmar and Chan [21], 
Belikov et al. [22], or Tsytovich [23], is not considered here, but is treated 
parametrically in Ref. [13]. 

The study of the a-particle evolution in time has been reduced to determination of 
SH/at, ZP,!&, and au/at as a result of slowing down, and af/iat due to the fusion source. 
In a small time increment (microsecond scale) the change in population following a 
given orbit (H, P, v) can be found by evaluating the averages (aH/at), (aP/at), 
(au/at>, and (af/ist> along that orbit and factoring by the appropriate distribution 
derivatives L?f/aH, E#?P, and 2f/av. With this result, the change in f(H. P, v) in time 
Atis 

f(H, P, v; t + 4t) - f(H, P, v; t) = $ At. (11) 

This technique is similar to that of Petrie and Miley [lo] since it describes a: particle 
orbits with a multigroup approximation, but differs from that technique in describing 
the shifts in distribution of particles along fixed orbits rather than following the shift 
in orbit of a collection of pseudoparticles, and in its applicability when the guiding- 
center approximation breaks down. 

3. NUMERICAL TECHNIQUE 

In order to find the time development of the entire distribution function, the 
range of H, P, and v is divided into groups of finite width AHj , APj , and Aq, . The 
value of the function f(Hi , Pj , DJ, abbreviatedA.j,, is a measure of the population 
of a particles following trajectories described by H, P, and v in the domain Hi - 
AHi/ < H < Hi + AHJ2, Pj - AP,/2 < P < Pi + APJ2, vk - Au,:/2 < v < vJ; f 
AqJ2. The change in & in a time increment At can be found for each possible 
combination of (ijk) by the procedure of Eqs. (7)-(ll), provided that this change is 
small compared to &: . All the necessary orbital parameters are evaluated assuming 
that Hi , Pj , and vfi are the approximate values for all& particles within the (ijk> 
group. 

As the a particles are produced and slow down in the background plasma, the 
distribution function changes. For time scales which are short compared to the 
slowing down time, it may be assumed that, as a result of small-angle scattering, the 
01 particles are transferred into neighboring orbits, for which the identifying indices do 
not change by more than 1; i.e., the change in H for a given particle is not more than 
AH in a single timestep, the change in P not more than AP, etc. Let us investigate the 
change in population distribution involving a particular orbit ([$). At time t, & 
01 particles travel in this orbit. The radial velocity of particles in this orbit is a known 
function of I’. Dividing the radial range into intervals identified by r1 , 

u,.,,,(r,) = Hi - rj” - 
I [ + - A(r,)]y. 02) 
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The radial turning points I”lmin and rLrnas for this orbit are found by setting u,.~~,P:) := 0 
and solving for Y[ : 

I 
Pk _ - A(r,f = H( - Pj”. YE 

The fraction of time that a particle on orbit (ijfc) spends in the interval dr, about r[ is 

While the particle is in this region, the time rate of change of energy is given b2? 
BN(H, , r,)/&‘, since ilH/?t is a function of H, n, Y-e and 7-i , while iz, TB I and T[ are 
functions of I’. Therefore, the average energy change of particles on orbit (Qkj in 
interval dr, during time At is 

This averaging process represents a multigroup equivalent to the process described by 
Eq. (8). The energy groups are labeled according to the ordering HI = 1.: lYf+I < 
Hi < Hiel < . ..<H2<Hl. 

The assumption is made that the number of particles losing enough energyy to drop 
into the next energy level i + 1 is proportional to the population of level i, times the 
ratio of the average energy change to the spacing, i.e., the number of partisles leaving 
orbit (ijk> and entering orbit (i + l,j, k) while in the interval I’~ is 

where 6H is defined in Eq. (13) and AHi is the width of energy interval i, As the 
particles enter orbit (i + 1, j, k), they leave orbit (i, j, k): 

AAjk = -Ah+l,j,2 . ! rs’j 

The same procedure is performed for particles changing momentum in radial interval 
I’~ . In the same manner as Eq. (13) was derived, 

where 

and 

$7) 
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where 
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Finally, the number of 01 particles produced by fusion per unit volume per unit time 
in radial interval dr, is 

where C is a normalization parameter representing the fusion rate at unit n and Ti . 
Here the fusion cross-section term (UU> has been approximated as 

(cm) = 1.17 x 1O-*5 7” m3/sec, 

where T is measured in keV. Considering the source to be isotropic, 

L?f;:.X ISOUFCe = vijk = 

2Avi AP/, C(Ty)3 (nym)2 Art At 
rrH?l” for i = 1. (18) 

z 

It is now possible to determinef(H, P, v; t + At), givenf(H, P, v; t). This is done 
by adding the changes in each radial interval throughout the plasma. For each interval 
Ar, , the change in f due to variation of particles on orbit (rjk) is 

and 

with the right-hand side positive. These operations are performed at all radial intervals 
Z, on all occupied orbits (ijk> where the radial velocity zi,,ijk(r,) is real.Aj, is always given 
as an initial condition at any time, and the fractional rates of change 8~14~~ , etc., 
are found through the use of Eqs. (13) through (19). After performing the operations 
for all allowable (ijkl) at time t, a new distribution function is found at time t + At. 

The multigroup approximation to Eq. (7) can now be seen when all the Af’s are 
added in the same expression. At interval Ar, , 
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where a,,, is the Kronecker delta function. Adding the results over all radial intervais, 

+(@t) . 
source 

Dividing by At yields the equation 

4. MACROSCOPIC VARIABLES 

In the previous sections, a method has been presented for determining the charac- 
teristics of the a-particle distribution function as the particles originate and siow 
down in a thermonuclear plasma column. The distribution function itself, however, 
yields relatively little information about particle behavior. Of much greater interest 
are the fluid-like properties of the a particles, such as perticle density, pressure? and 
heating rates. These properties are derived by taking moments of the d~str~butj.~~ 
function. 

Keeping in mind thatJjTz is the number of particles whose motion is described by 
the orbit (Gk), and that the fraction of time that a partic!e on this orbit spends in the 
radial interval Arl is 

Arr bnax A, 
ix 

Z 

%&z> Z=Zmin %&z! ) 

the number of particles following orbit (ijk> present at a given time in the radial 
interval is 

AT, 
J/;;jk - 

‘mx Ar! 
%&z> iI z=(,in %,,,(4 - 

Considering all particles passing through the interval, the total number of particles 
present in radial interval Arl at a given time is 
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The quantity to be summed over is a finite difference form of the averagef, as given by 
Eq. (8), so the number of particles present in radial interval drl is 

The volume of the radial interval I per unit length is n(rt - r%,), so the number 
density of 01 particles in radial interval dr, is 

n&J = Cijk (f )ijk 
dr,” - r;-J l 

Nondimensionalizing f such that 

f = 2rR2Nf’, 

where R is a characteristic plasma column radius and N a characteristic number 
density 

nt(r;) = 2 ILj?c (f >ijk Ly f2 _ rf2 ’ (23) 
Z z-1 

where the primes denote nondimensional forms. 
Other fluid variables can be found in a similar manner. For instance, the total 

heating rate due to all 01 particles is 

The volumetric heating rate of electrons is then 

5. RESULTS 

The methodology described above has been applied to plasma columns of solenoid 
geometry [20]. The geometry is shown in Fig. 2. In this approach to fusion, a long 
cylindrical plasma column is confined by an axial magnetic field. A slender plasma 
column is heated along the solenoid axis by an external source, either a laser or 
electron beam. In the fast solenoid version, the magnet current compresses the plasma, 
so that the region between the heated plasma and the first wall is vacuum. In the slow 
solenoid version, this region is filled with cooler plasma. Both cases are considered 
below. The assumption that H, P, and v change slowly on a cyclotron period time 
scale is valid as long as the slowing-down time and the deflection time are much longer 
than the orbital period. This is true in all cases considered here. 
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Qs=--- - TNERMONUCLEAR PLASMA 

LASER- OR E-BEAM 

FIG. 2. Solenoid plasma geometry. 

Fast Solenoid Case 

In the fast solenoid case considered here, the plasma temperature is 6 keV, its 
radius is 7 mm, and /3 = 0.95. The plasma is uniform with a sharp boundary, sur- 
rounded by a vacuum with a magnetic field of 40 T. These conditions correspond to a 
plasma density of 3.15 x 1O23 ions/m3. An isotropic a-particle source appropriate to 
these plasma properties was introduced, and the evolution of the x-particle properties 
was followed, assuming that the plasma remains stationary. The z-particle energy loss 
rate published by Kammash and Galbraith [17] was assumed. The r-particle energy 
spectrum is presented in Fig. 3a, the particle density in Fig. 3b, average energy in 
Fig. 3c, and the a-electron heating rate in Fig. 3d. 

0.8 I 
FAST SOLENOID CONDITIONS FAST SOLENOID CONDITIONS 

R=7mm R=7mm 

kTO = 6 keV kTO = 6 keV 

Bg=40T Bg=40T 

PO = 0.95 PO = 0.95 

I, = 30.23@ I, = 30.23@ 

w = 3.52 MV w = 3.52 MV 

0.20 

1.6 
L: 

I 
FAST SOLENOID CONDIT~NS 

1.4 c R=7mm 

hTo = 6 keb’ 

00 = 40 1 

p, = 6.96 

1, = 30.23ps 

1.D 0.8 0.6 0.4 0.2 lJ.u 0.0 1.0 2.0 

--H/W r/l+ 

FIG. 3a. Normalized Y spectrum, f,(H), fast solenoid conditions in stationary plasma. 
FIG. 3b. Alpha-particle density profile, fast solenoid conditions in stationary plasma. 
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I, = 30.23gs 
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I 
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r--c 

FIG. 3c. Mean a-particle energy, fast solenoid conditions in stationary plasma. 
FIG. 3d. Electron heating profile, fast solenoid conditions in stationary plasma. 

The a-electron slowing-down time for such a plasma is ts = 30,usec-much less 
than a characteristic heating time. The ol-particles are continuously born at kinetic 
energy H = 1. In this descriptive example the birthrate is constant as well, because the 
plasma properties remain fixed. The energy spectrum at various times is shown in 
Fig. 3a. The ordinate is the fraction of c+particles with kinetic energy within H &to. 1. 
For times smaller than any slowing-down time, the spectrum is predominantly high- 
energy. As time evolves and the a-particles slow down, the spectrum softens. The 
particles born first begin to reach the thermal energy zone at a time of about 75 psec, 
tits = 2.5. At this time, the spectrum is still skewed on the high-energy end, because 
particles are still being born, and those with a large residence time outside the plasma 
have not slowed much. By t/ts = 4, the spectrum is flattening out and beginning to 
approach a quasi-steady state, where the number of particles slowing down through 
each energy region is equivalent to the number being born at H = 1. For later times 
(t/ts > lo), the nonthermal a-spectrum is approximately stationary, with particles 
being introduced at H = 1 and lost at the same rate to the thermal energy group. 
After this time, the only change in the spectrum is that the thermal group grows at the 
birthrate. 

In the same time that the nonthermal a: spectrum takes to approach a steady state, 
the fluid properties of the 01 particles inside the plasma also approach a steady state. 
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y the time t/t8 = 10, the density profile inside the plasma is steady, as shown in 
ig. 3b, as are the other fluid properties, such as the average energy profile shown in 

Fig. 3c, and the electron heating profile shown in Fig. 3d. The density profile 
at the axis, and decays more or less uniformly to zero at 1 Larmor diameter o 
the edge of the plasma, except for a very large peak at the very edge of the backg 
plasma. This peak is a result of the high plasma p considered in this case. For very 
high /!I geometry, where the internal magnetic field is very low, the a-particle trajec- 
tories can be characterized by straight lines inside the plasma, and circles outside. 

igh-energy 01 particles, with large Larmor radii, execute orbits extending far from 
the plasma edge. In the absence of an appreciable internal magnetic field, all ol-particles 
reach the plasma edge, regardless of their energy. Once having reached the plasma 
edge, the excursion distance out of the plasma depends strongly on the perpendic 
energy. Alpha particles of small kinetic energy do not penetrate deeply into 
vacuum field. Those higher-energy particles with deep excursions out of the plasma 
slow down and pile up at the edge of the plasma. As the number of thermal 
increases, the number of particles in this class increases, resulting in the peak 
density just outside the plasma seen in Fig. 3b. This explanation of the p 
stantiated in Figs. 3c and 4. In Fig. 3c, it can be seen that the development of t 
density peak just outside the plasma coincides with the development of a depression 
in the mean a-particle energy, indicating a buildup of low-energy particles in that 

. . I  

FAST SOLENOlD CONDiTlONS 

1.4 R=Tmm 

kTo = 6 keY 

I So= 45 T 

FIG. 4. Alpha profiles, p = 0.5, fast solenoid conditions in stationary plasma. 
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FIG. 5. (a) Normalized OL spectrum, steady solenoid conditions in stationary plasma. (b) Alpha- 
particle density profile, steady solenoid conditions in stationary plasma. (c) Electron heating profile, 
steady solenoid conditions in stationary plasma. 
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region. Furthermore, the same profiles are shown in Fig. 4 for the case of lower p at a 
time when the average a-particle energy is the same. For p = 0.5, the ratio of peak 
density to centerline density at t/t8 = 40 is 1.4, compared to 1.7 for /3 = 0.95 at 
t/ts = 20, indicating a milder peak for the same degree of thermalization. This strong 
peaking is reduced when the effect of a-particle heating on the plasma is considered in 
a self-consistent manner [13], because the plasma expands to encompass the sIow 
a-particles. 

The rate of a-particle slowing down in a cold plasma is much more rapid than in a 
hot plasma. Considering the fact that, in addition, there is no vacuum region where 
-the particles do not slow down, we see that thermalization is very rapid indeed. The 
methodology presented in Sections 2-4 above has also been applied to a stationary: 
steady solenoid plasma. In this case, R = 7 mm, T, = 6 keV, B, = 40 T: and /S = 
0.95 on the axis, just as in the fast solenoid case, but now the hot plasma is surrounded 
by a cold plasma with T = 10 eV, instead of a vacuum. A temperature profile of 

7-=1-)4 for i’<l 

= 0.00167 for r > 1 

was seiected and B/n is constant everywhere. The a-particle energy spectrum is shown 
in Fig. 5a, the particle density in 5b, and the a-electron beating rate in Fig. 5~. 

It can be easily seen from all these figures that quasi-steady-state conditions are 
reached very rapidly in the case of the steady solenoid. Within i *Msec, the only pa;t 
of the energy spectrum that is not steady is the thermal energy group, the only part of 
the density profile that is not steady is near the axis, and the electron heating proHe 
is changing very slowly. Lt is interesting to note that, whereas in the fast solenoid case 
quasi-steady conditions were reached when the interior became steady and particles 
continued to pile up outside the plasma, in the solenoid case the external regions 
quickly approa.ch steady state and particles continue ‘to pile up inside the hot plasma. 
In Fig. 5c, it is seen that the large majority of the a energy is deposited in the electrons 
within a Larmor diameter outside the hot-cold plasma interface. 

6. CONCLUSIONS 

A new methodology has been developed to analyze the dynamics of the CL parllcies 
produced by fusion in a linear, magnetically confined plasma column with radially 
nonuniform Auid properties. The thermonuclear background plasma is considered 
as a stationary, axially symmetric magnetofluid with radial structure. The column is 
assumed to be sufficiently long that end effects ca.n be neglected. A multi-group 
technique has been utilized to examine the a-particles as a collection of partic& 
distributed among a continuous spectrum of confined orbits. 
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This methodology should apply to any geometry for which the a-particle orbits can 
be described in terms of adiabatic invariants which change for a single particle very 
slowly compared to the orbital period. It provides a single mathematical formulation 
which applies equally well to the initial transient a-dynamics phase immediately 
following plasma ignition and to the quasi-steady-state phase following. The transi- 
tion between the two occurs after several slowing-down times, as determined by the 
plasma core in the fast solenoid case and the surrounding cold plasma blanket in the 
steady solenoid case. 

In the fast solenoid case, the quasi-steady phase is characterized by an M energy 
spectrum which is stationary and approximately inversely proportional to dE/dt for 
superthermal a-particles. with the thermal population increasing at the rate of birth 
of new a: particles. The radial profile of the fluid variables is stationary in the interior 
of the plasma, with particles accumulating near the plasma surface as they slow down. 
In the steady solenoid case, the 01 spectrum is similar during the quasi-steady phase, 
with equilibrium achieved much earlier because of the rapid energy transfer in the 
colder, denser plasma. In this case, however, steady state is characterized by stationary 
fluid profiles outside the hot plasma, and particles drift to the hotter plasma as they 
slow down. Most of the oi energy is transferred to the blanket plasma when it is 
present, which should result in much less heating of the thermonuclear plasma. 

In addition to providing a technique for determining the evolution of the a-particle 
distribution function, the methodology developed here also permits transformation to 
fluidlike variables for the a-particles through appropriate weighting of moments of 
the distribution function. The use of a distribution function in an adiabatic-invariant 
representation results in an enormous increase in the time scale which can be treated 
by computational techniques-from the cyclotron period range to the slowing-down 
time range. This enables analysis of the entire duty cycle of a laser solenoid plasma in 
very reasonable computation times. 
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